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Abstract

Diffusion ordered spectroscopy (DOSY) is a powerful two-dimensional NMR method to study molecular translation in various sys-
tems. The diffusion coefficients are usually retrieved, at each frequency, from a fit procedure on the experimental data, considering a
unique coefficient for each molecule or mixture. However, the fit can be improved if one regards the decaying curve as a multiexponential
function and the diffusion coefficient as a distribution. This work presents a computer code based on the Hopfield neural network to
invert the data. One small-molecule binary mixture with close diffusion coefficients is treated with this approach, demonstrating the effec-
tiveness of the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The diffusion coefficient is an important property in
studies of mixtures, providing the size and structural infor-
mation of the particles [1]. In nuclear magnetic resonance,
the diffusion ordered spectroscopy, DOSY experiments [2],
measure this property of compounds. This technique is
based on the application of the gradient field, which
encodes and decodes the translational diffusion motion of
the components in samples. The signal attenuation is
detected and it depends on the gradient strength, the wait-
ing time between the gradients and the diffusion coefficient
of the molecules.

In general, the NMR spectrometers work with a fit pro-
cedure of the intensity decaying function, providing the dif-
fusion coefficient as a parameter. The distribution function
can also be obtained using the inverse Laplace transform.
If there is more than one component in the sample with
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closed diffusion coefficient, the decaying intensity is com-
posed of these contributions and the distribution function
concept is more adequate to deal with these problems.

To obtain the diffusion coefficient distribution from
these experiments, one has to solve a linear inverse
problem [3]. Generally, these inverse problems are clas-
sified as an ill-conditioned problem with a decreasing
character of the singular values and special methods,
e.g., Tikhonov regularization [4,5], truncated singular
value decomposition [5,6] and inverse Laplace transform
[7], have to be employed.

In this work, an alternative method based on the Hop-
field neural network is proposed. Experimental data of an
equimolar mixture of Brucine and Isopinocampheol was
used to emphasize the applicability of the method. This
approach has been also successfully tested to recover the
transverse relaxation time distribution from spin-echo
experimental data [8], macromolecular properties from
light scattering experimental data [9], and the probability
density function from experimental positron annihilation
lifetime spectra [7].
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2. DOSY—theoretical background

In nuclear magnetic resonance the diffusion motion is
studied by the diffusion ordered spectroscopy—DOSY.
This technique is based on the application of pulsed field
gradient and each infinitesimal volume in the sample is
encoded. The angular frequency of nuclear spins depends
on its position and the magnetogyric ratio, c, [10]

xðrÞ ¼ �cBðrÞ: ð1Þ
The magnetic field gradient is aligned with the principal

magnetic field, conventionally in the z direction. The appli-
cation of the gradient induces a change in the phase angle
for each spin as,

/ðzÞ ¼ cgzzt; ð2Þ
with gz being the gradient strength and z the coordinate of
spin at time t. The total change in the phase angle has
another important contribution, related with the principal
magnetic field, / (z) = cB0t + cgzzt.

The pulse sequence in DOSY is similar with the spin-echo
experiments. One of the most popular DOSY sequences, the
BPPSTE (bipolar pulses with stimulated echo), may be
described as follows: two pulsed field gradients with equiva-
lent intensity and opposite signs are applied before and after
a hard 180� pulse. This 180� pulse is applied after the first 90�
and before the second 90� pulse. This second hard 90� pulse
tips the magnetization towards the z-axis, and the molecule
then diffuses aligned with main field. After the diffusion
delay, a third 90� pulse is issued, followed by the second
180� pulse, flanked by two pulsed field gradients, also with
equivalent intensity and opposite signs, aiming at regrouping
the magnetization in the transversal plane, resulting in a
Hahn-echo [11]. To note a change in the phase angle, the sec-
ond gradient has to be applied after the spins moved, in a D
interval. This interval is chosen depending on the diffusion
coefficient of the particles.

Within the D interval, the change of the phase angle is
proportional to the strength of the field gradient. The
coherence of the signal is lost and this provides an attenu-
ation of the registered signal. To determine the diffusion
coefficient of the particles, a set of experiments has to be
realized varying the gradient amplitude. This relation can
be expressed by [10,11],

IðqÞ ¼ I0 expð�Dq2D0Þ; ð3Þ
being I the intensity of the signal, D the diffusion coeffi-
cient, D 0 = D � d/3, with D the diffusion time and d the gra-
dient duration; q = cgd, with c being the magnetogyric
ratio and g the gradient amplitude.

Generally, the diffusion coefficient is recovered in a spe-
cific chemical shift by a fitting procedure of the Eq. (3) and
this methodology provides a diffusion coefficient as an
appropriate parameter. Nevertheless, if the signal analyzed
in the experiment is overlapped, commonly in mixtures, the
diffusion coefficients for each component cannot be
retrieved.
In a multi-component solution, one has to consider the
signals as a sum of several decaying functions [11,12],

Iðq; mmÞ ¼
X

AnðmmÞ expð�Dq2D0Þ; ð4Þ

with An (mm) being the intensity of the signal in NMR exper-
iment at the frequency mm.

With a continuous distribution of the diffusion coeffi-
cients at a particular m frequency, the Eq. (4) can be
expressed as,

IðsÞ ¼
Z

expð�DsÞf ðDÞdD; ð5Þ

with s = q2D 0 and f (D) the distribution function of the dif-
fusion coefficients. The diffusion coefficient distribution has
been obtained in NMR spectrometers by the inverse
Laplace transform in the CONTIN program [8,10,12]. This
code, developed by S.W. Provencher, solves the problem by
numerical methods similar to the Tikhonov regularization
approach, with the regularization parameter being chosen
in a statistic set of data. In this work, the Hopfield neural
network was proposed.

3. Inverse problems and Hopfield neural network

In a variety of problems in science, some microscopic
properties only can be obtained by the solution of model
functions that describes macroscopic experimental data.
These model functions, as Eq. (5), are commonly known
as Fredholm integral equation. The retrieval of the micro-
scopic property, f (D), from the experimental data, I (s), is
an ill-conditioned inverse problem and requires some
appropriate techniques to be solved [13].

The standard procedure was adopted to calculate the
function f in Eq. (5) from data I (s) and A = exp(�sD). It
consist in discretize the variable s in an appropriate interval
and convert the integration in a convenient weighted sum
to get Kf = I, being I = [I (s1), I (s2), . . . ,I (sm)]T, f = [f (D1),
f (D2), . . . , f (Dn)]T and K the (m · n) matrix, defined as

K ¼

w1AðD1; s1Þ w2AðD2; s1Þ . . . wnAðDn; s1Þ
w1AðD1; s2Þ w2AðD2; s2Þ � � � wnAðDn; s2Þ
..
. ..

. . .
. ..

.

w1AðD1; smÞ w2AðD2; s1Þ . . . wnAðDn; smÞ

0
BBBB@

1
CCCCA;

in which the w1,w2, . . . ,wn are the appropriate coefficients
determined by the quadrature to represent the integration
equation.

In the Hadamard sense [14], an ill-conditioned inverse
problem is established if the solution does not exist, is
not unique or continuous in Rn. The decreasing character
of the singular values in the K matrix induces an inverse
matrix presenting values bigger than the original one.
Therefore, in a problem with m = n, if the solution
f = K�1 I is tried, the experimental error in I matrix is
magnified and a wrong answer to the inverse problem is
obtained.
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To avoid inappropriate solutions in Eq. (5), the Hop-
field neural network [3] was adapted to solve the inverse
problem. This neural network is composed by a single
recurrent layer with logic units fully connected. The con-
nections between the neurons i and j are weighted by a fac-
tor Tij and external contributions are considered as a Oi (t)
term [3,13]. Therefore, the state of the neurons, ui, is calcu-
lated by a weighted sum of all its inputs,

duiðtÞ
dt
¼ �uiðtÞ þ

Xn

j¼1

T ijf ðujðtÞÞ þ OiðtÞ
" #

; ð6Þ

with f (uj (t)) = fj = tanh(ui) being the activated neurons
connected to the neuron i. The activation function is cho-
sen as an increasing function, i.e., of/ou > 0, to satisfy the
convergence criteria in the neural network.

The neural network has an associated energy function
described by,

E ¼ 1

2

Xn

j¼1

K1jfj � I1

 !2

þ 1

2

Xn

j¼1

K2jfj � I2

 !2

þ . . .

þ 1

2

Xn

j¼1

Kmjfj � Im

 !2

; ð7Þ
Fig. 1. Brucine and Isopinoca
with n being the number of points used to represent
Eq. (5) and m the number of available experimental
data.

The convergence criteria, dE
dt < 0 is satisfied if the Ham-

iltonian relation [3,13,15],

dui

dt
¼ � oE

of
ð8Þ

is established. Therefore, the Eq. (8) is developed as [3],

dui

dt
¼ �

Xn

j¼1

K1jfj � I1

 !
K1i �

Xn

j¼1

K2jfj � I2

 !
K2i

� � � � �
Xn

j¼1

Knjfj � In

 !
Kni ð9Þ

or,

dui

dt
¼
Xn

j¼1

T ijfj þ Oi ð10Þ

with,

T ij ¼
Xn

l¼1

KliKlj ¼ T ji and Oi ¼
Xn

j¼1

KjiIj:
mpheol mixture spectrum.
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Fig. 3. Experimental signal intensity decay (*), simulated data using the
Eq. (11) (full line) and the recovered data (bullets) in the direct problem,
Kf = I, using the ILT distribution function, f, at d = 1.036 ppm.

R.C.O. Sebastião et al. / Journal of Magnetic Resonance 182 (2006) 22–28 25
The state of the neurons is calculated by integration of
Eq. (10). A stable state, f = [f1f2. . .fn], that minimizes
kKf � Ik2

2 is reached and the multiple solution character
of the problem can be observed along the integration pro-
cedure [16,17]. The appropriate solution is chosen based on
the experimental error and chemical coherence.

4. Results and discussion

Experimental data of signal intensity, I, as a function of
gradient strength for Brucine and Isopinocampheol 50:50
molar mixture were performed in a 500 MHz Varian spec-
trometer. The pulse sequence used was the Stimulated Echo
Sequence with self-compensating gradient using a 2-ms
purge pulse before acquisition. This sequence employs bipo-
lar gradient pulses flanking the second 90�-pulse, which tips
the magnetization along the z-direction, where it is stored
during diffusion delay before the read-out. Chemical shifts,
used for decaying curves measurements, were predicted by
the 1H NMR experiments of the mixture. The Figs. 1 and
2 present the 1H NMR experiments of the mixture and sub-
stances, respectively. The spectrum of the substances was
performed just to confirm the overlapping areas.

In Fig. 3 is shown the experimental decaying curve at
d = 1.036 ppm. Simulated data in each chemical shift,
was proposed as a bi-exponential function,

IðsÞ ¼
X2

i¼1

Ai expð�sDÞ: ð11Þ

The amplitudes Ai and the s terms were determined by a fit
procedure of experimental data. These simulated data were
in fair agreement whit the experimental ones, as is also
shown in Fig. 3.

The Eq. (5) stands for the Laplace transform of the diffu-
sion coefficient distribution and was represented in a rectan-
gular base as Kf = I, being 64 experimental data and n = 264
points. The base size and the kernel calculation were tested in
the direct problem. In this case, the analytical inverse
Laplace transform (ILT) was used as the solution [18],
isopinocampheol

4567

Fig. 2. Brucine and Isopin
f ðDÞ ¼ lim
k!1

ð�1Þk

k!
I ðkÞ

k
D

� �� �
k
D

� �kþ1

; ð12Þ

in which I(k) (k/D) is the order k derivate of I (s) at the (k/D)
point and D is the diffusion coefficient. Since the Eq. (11)
describes the I (s) function, this derivative can be expressed
by

I ðkÞðk=DÞ ¼ ð�1Þk
X

AiDk
i exp �Di

k
D

� �
k
D

� �kþ1

; ð13Þ

in which the k parameter is chosen according to the diffu-
sion coefficient magnitude, since the (k/D) term becomes
infinite with k. The k = 20 was chosen for this problem
and the Fig. 3 also presents the signal intensity recovered
in the direct problem.

For each chemical shift, one inverse problem has to be
performed and the distribution function is obtained by
the Hopfield neural network. An initial condition to the
brucine

ppm123

ocampheol spectrum.
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neurons is necessary for integration procedure of Eq. (10)
and the computational time depends on the feature of this
initial state of the neurons. In this sense, the analytical
inverse Laplace transform, Eq. (12), can be used.

At this point is important to emphasize the decreasing
energy character of the Hopfield neural network. Since
Table 1
Diffusion coefficients and relative error in the Hopfield neural network appro

Chemical shift ILT error (%)
V = ILT response

HNN error (%)
V = HNN distribution
with 1 peak

HNN er
V = HN
with 2 p

0.896 1.931 0.4710
0.932 1.909 0.5277
1.018 1.895 0.5017
1.036 1.797 0.4632
1.100 1.8177 0.4794
1.113 1.8718 0.4952
1.193 2.060 0.5077
1.313 1.9253 0.4997
1.685 1.8284 0.4609 0.8035
1.711 1.8708 0.4574
1.773 1.8566 0.4654
1.910 1.794 0.4509 0.8286
2.026 1.995 0.5410 0.5409
2.342 1.956 0.3614 0.6358
2.477 1.72 0.4761 0.8410
2.860 2.271 1.308
3.157 2.314 1.485
3.837 1.888 0.4389
3.874 1.8760 0.4250
3.934 2.347 1.509
4.280 2.305 1.411 1.4023
5.00 2.2348 1.116
6.700 2.0488 0.9412
7.782 2.171 1.213

The relative error was calculated as E% ¼
ffiffiffiffiffi
S2

x

q
=I� 100, were

ffiffiffiffiffi
S2

x

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðkV

q
number of available data and I the experimental data. The parentheses are fo
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Fig. 4. Probability density function obtained by the Hopfield neural
network at d = 1.036 ppm.
the temporal derivation of energy is always negative, the
initial condition given to the network is improved and
the experimental data recovered in the direct problem has
a smaller residual error. Another important characteristic
of the network is related to the initial guess of the problem.
If the initial condition corresponds to a solution of the
problem, dE/df = 0 and the integration in neurons states
is not performed.

The Fig. 4 presents the diffusion coefficient distribution
obtained from the inversion procedure at d = 1.036 ppm.
At this chemical shift, there are not overlapped signals,
as can be verified by the substances spectrum in Fig. 2
and the distribution function with only one peak is expect-
ed. Integration of Eq. (10) was performed until the residual
error kKV� Ik2

2, in which V is the network response, reach-
es a desired tolerance.

To test the potentiality of this approach, in the overlap-
ping regions a random distribution function is also given to
the network as initial condition and the relative errors
expressed in percent is presented in Table 1. The results
obtained by the network when the ILT initial condition is
considered are also presented in Table 1. One can note
the excellent agreement with the experimental and the
recovered data by the neural network in all chemical shifts.
The diffusion coefficients, given by the center of the proba-
bility density function, are also presented.

In the overlapping regions, at d = 1.685, 1.910, 2.342
and 2.477 ppm one can observe the neural network
ach (HNN) and inverse Laplace transform method (ILT)

ror (%)
N distribution
eaks

Random distribution
function error (%)
V = initial condition

Diffusion coefficient
obtained
by the HNN/(m2/s)

10.38 (�10)
7.827 (�10)
10.48 (�10)
10.21 (�10)
10.73 (�10)
10.21 (�10)
10.19 (�10)
9.287 (�10)

41.30 6.254 (�10) and 10.98 (�10)
10.54 (�10)
10.44 (�10)

38.86 6.254 (�10) and 10.88 (�10)
39.13 6.254 (�10) and 10.78 (�10)
37.15 6.254 (�10) and 10.09 (�10)
47.8 6.254 (�10) and 11.28 (�10)

6.70 (�10)
5.75 (�10)
5.91 (�10)
5.81 (�10)
6.00 (�10)

55.66 6.254 (�10) and 10.88 (�10)
7.56 (�10)
5.69 (�10)
5.85 (�10)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� IÞ2=N � 1, being V the neural network response or ILT response, N the
r power of 10.



Fig. 6. Comparison between DOSY plots: (a) diffusion coefficients
obtained by HNN and (b) diffusion coefficients obtained by ILT. DOSY
spectrum obtained with DgcsteSL sequence, 64 gradient strengths. F1
scale is in 10�10 m2/s.

R.C.O. Sebastião et al. / Journal of Magnetic Resonance 182 (2006) 22–28 27
provides a distribution function with one peak and relative
errors smaller than the ILT ones and provides a distribu-
tion function with two peaks when a random distribution
function is given as initial condition. Nevertheless, in the
both situations, the neural network response presents
smaller relative errors than the ILT solutions that have a
distribution function with only one peak. This characteris-
tic of the inverse problems is essential to confirm the
required contribution of the experimental research. Despite
the relative errors, the distribution functions with two
peaks have to be designed as the chemical solution of the
problem.

At the chemical shifts d = 2.026 and 4.280 ppm, one can
note the relative errors is smaller when the distribution
function with two peaks is considered. In this case the
chemical solution and the mathematic criteria are coinci-
dent. The Fig. 5 presents the distribution function obtained
by the neural network at d = 2.026 ppm.

The diffusion coefficients as a function of the chemical
shift were plotted in Fig. 6a. From this figure and Table
1, one can note two principal diffusion coefficients, one
averaged about 6.308 · 10�10 m2/s and another in
10.47 · 10�10 m2/s, characterizing the two molecules in
the mixture. This DOSY-plot can also be used as an impor-
tant tool to help the assignment of peaks in NMR experi-
ments. In Fig. 6b, is shown the DOSY-plot obtained in
the ILT code of the Varian spectrometer. This code is com-
monly used in all available spectrometers.

A close inspection of Figs. 6a and b show that the strik-
ing difference between the ILT and the HNN processing is
that the latter presents a less scattered diffusion plot, which
posits a higher accuracy for the HNN method. Another
positive character of this method is the HNN capability
of retrieve the distribution function with more than one dif-
fusion peak per frequency, which is extremely useful in
overlapped regions.
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Fig. 5. Distribution function obtained by the Hopfield neural network at
d = 2.026 ppm.
5. Conclusion

The diffusion ordered spectroscopy is a useful technique
to study the diffusion motion in a wide variety of systems.
In this work, the inversion of experimental data of Brucine
and Isopinocampheol equimolar mixture was proposed
using Hopfield neural network. The inversion procedure
is an ill-conditioned problem and requires a special tech-
nique for its numerical treatment.

In NMR, is usual to invert problems described by the
Laplace transform, as in Eq. (5), using the CONTIN pro-
gram. However, this program is based on the Tikhonov
regularization and has about 5000 lines with 66 subrou-
tines. The computer code developed in the present work
is composed by approximately 100 lines with the principal
attributes of the Hopfield neural network combined with
the analytical inverse Laplace transform.

The usage of the inverse Laplace transform as initial
condition of the neurons proved to be appropriate. The
recurrent neural network, due to its property of decreasing
energy, will improve the initial condition, resulting in a dis-
tribution function with lower relative error. Based on the
results obtained in this work, it can be concluded the
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HNN can be used for DOSY processing, providing more
accurate results in comparison with the ILT approach.
The methodology used here is not restricted and can be
extended for several problems in science.
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